First group of Bristol quantum entrepreneurs set out

May 22, 2017 by · Leave a Comment
Filed under: News 

Quantum technology developed in Bristol is being used in medical screening, drone-based gas-leak detection and cryptography.

Three of the entrepreneurs on this year’s programme at the Quantum Technology Enterprise Centre (QTEC), the first, have been showing their plans. The course at the University of Bristol combines business training with technology development and is looking to recruit 11 more entrepreneurs for next year’s programme.

Neciah Dorh of FluoretiQ is developing a handheld fluorescent sensor that is 100 times more sensitive than today’s systems. The first product is for testing water quality by detecting bacteria at a level of parts per trillion.

Dorh is also looking at using the sensor to detect the bacteria that cause sepsis in hospital. This currently takes from 10 to 24 hours, so he is working with the department of medicine in an InnovateUK project to develop a chemical tag for the bacteria so that a handheld sensor that can provide a result instantly.

Meanwhile Xiao Ai has been working on ways to use single photon measurement technology to detect gas leaks from pipelines. Quantum Light Metrology is using quantum sensor technology licensed by the University of Bristol to Swiss company IDQ to build a lightweight sensor that can be installed on a drone.

The software allows the sensor to detect the gas leaks from a distance of 50m from a drone moving at 30mph, and QLM is working with drone operator Sky-Futures to monitor pipelines and gas installations around the world.

The most advanced technology in the programme is aiming to provide quantum cryptography for communications systems. KETS Quantum Security has developed a commercial chip that can make unbreakable cryptography systems that are ten times smaller, faster and cheaper than today’s systems, says Philip Sibson, chief technology officer. The technology has been demonstrated in the lab and the company, now with five people, is working with a European defence company on using the system on a drone.

You can apply for QTEC’s next programme here. See the story on the High Tech channel at TechSpark

Bristol team builds optical components for quantum computing

March 2, 2011 by · Leave a Comment
Filed under: News 

Quantum Circuits Based on MMI Devices

A research group led by scientists from the University of Bristol has demonstrated the quantum operation of new components that will enable compact circuits for future photonic quantum computers and is starting to build the components.

Building a quantum computer will require a large number of interconnected components – gates – which work in a similar way to the microprocessors in current personal computers. Currently, most quantum gates are large structures and the bulky nature of these devices prevents scalability to the large and complex circuits required for practical applications.

Recently, the researchers from the University of Bristol’s Centre for Quantum Photonics showed, in several important breakthroughs, that quantum information can be manipulated with integrated photonic circuits. Such circuits are compact (enabling scalability) and stable (with low noise) and could lead in the near future to mass production of chips for quantum computers.

Now the team, in collaboration with Dr Terry Rudolph at Imperial College, London, shows a new class of integrated divides that promise further reduction in the number of components that will be used for building future quantum circuits.

These devices, based on optical multimode interference (and therefore often called MMIs) have been widely employed in classical optics as they are compact and very robust to fabrication tolerances. “While building a complex quantum network requires a large number of basic components, MMIs can often enable the implementation with much fewer resources,” said Alberto Peruzzo, the PhD student working on the experiment.

Until now it was not clear how these devices would work in the quantum regime. Bristol researchers have demonstrated that MMIs can perform quantum interference at the high fidelity required.

Scientists will now be able to implement more compact photonics circuits for quantum computing. MMIs can generate large entangled states, at the heart of the exponential speedup promised by quantum computing.

“Applications will range from new circuits for quantum computation to ultra precise measurement and secure quantum communication,” said Professor Jeremy O’Brien, director of the Centre for Quantum Photonics.

The team now plans to build new sophisticated circuits for quantum computation and quantum metrology using MMI devices.

Enhanced by Zemanta